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Abstract An efficient approach to increase the reso- 
lution power of linkage analysis between a quantitative 
trait locus (QTL) and a marker is described in this paper. 
It is based on a counting of the correlations between the 
QTs of interest. Such correlations may be caused by the 
segregation of other genes, environmental effects and 
physiological limitations. Let a QT locus A/a  affect two 
correlated traits, x and y. Then, within the framework of 
mixture models, the accuracy of the parameter estimates 
may be seriously increased, if bivariate densitiesf~, (x, y), 
fA~ (x,y)  and fAA (x,y)  rather than the marginals are 
considered as the basis for mixture decomposition. The 
efficiency of the proposed method was demonstrated 
employing Monte-Carlo simulations. Several types of 
progeny were considered, including backcross, F2 and 
recombinant inbred lines. It was shown that provided 
the correlation between the traits involved was high 
enough, a good resolution to the problem is possible 
even if the QTL groups are strongly overlapping for 
their marginal densities. 

Key words ML-estimation �9 QTL �9 Mixture model �9 
Multitrait complexes 

Introduction 

The resolution power of marker-based analysis of quan- 
titative traits is the major factor affecting the practical 
importance of quantitative trait locus (QTL) mapping. 
A detailed discussion of the issues concerning the power 
of tests for detecting linkage and designing experiments 
can be found in many publications (e.g. Soller and 
Genizi 1978; Demenais et al. 1988; Lander and Botstein 
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1989; Soller and Beckmann, 1990; Weller and Wyler 
1992; Carbonell et al. 1993). The precision of the pa- 
rameter estimates depends on the effect of the QTL in 
question relative to the total phenotype variance of the 
trait. Thus, with a QTL (A/a) segregating in a backcross 
progeny, in the case of equal variances in the groups Aa  

2 ~r2), the ratio (XA, -- Xaa)/~ is of pri- and aa (erda = ~r ,~ = 
mary interest when discussing the power of tests for 
marker-QTL linkage or the estimation precision of the 
QT locus effect d = x a ~ -  x,a and recombination rate 
between A/a  and a linked marker. Therefore, it is ex- 
pected that lowering the trait variance, e.g. by progeny 
testing, could increase the resolution power (Thoday 
1967; Soller and Beckmann 1990). What can happen if 
the variability in one of the groups, say in Aa, grows? 
Intuitively, one would expect a decrease in resolution 
proportional to the increase in o-~. However, we found 
that if the distance d = XA, -- Xaa between the means xA~ 
and x,, is small, then the precision of the estimates 

a is taken into increases with increasing a2~, if ~r2~ r G,~ 
account (Korol et al. 1994). 

Among other possibilities for improving the preci- 
sion of mapping, it is worth mentioning the multimarker 
(interval) approach (Lander and Botstein 1989; Haley 
and Knott 1992; Martinez and Curnow 1992), selective 
sampling (Lebowitz et al. 1987; Carey and Williamson 
1991; Darvasi and Soller 1992), sequential analysis 
(Morton 1955; Boehnke and Moll 1989; Motro and 
Soller 1993; Korol et al. 1994b) and simultaneous analy- 
sis of several QTL (including linked ones) affecting the 
target trait (Jansen 1993; Jansen and Stam, 1994; Zeng 
1994). 

Under certain conditions, one can expect to increase 
the discrepancy between the QTL groups (Aa and aa, for 
a backcross case) based on the analysis of joint distribu- 
tion of several traits [sayf(x,  y)] even if the groups are 
strongly overlapping in their marginal distributionsf(x) 
andf(y). An increased discrepancy between the compo- 
nent distributions of the QT in the segregating progeny 
may result in a higher accuracy of linkage estimation 
between the marker and QTL. Indeed, earlier we have 
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shown that with high enough correlations between 
quantitative traits, a good resolution is possible, in 
principle, even if the QTL groups are strongly overlap- 
ping for their marginal distributions (Korol et al. 1987, 
1994b). It should be stressed here that the basic idea of 
using correlations to increase the performance of analy- 
sis is rather common in genetics. In this connection, 
such situations as genotype-environment interaction 
(Falconer 1981), divergence of populations or cultivars 
(Arunachalam, 1981), index selection (Lin 1978), 
marker-assisted breeding (Lande and Thompson 1990), 
the use of other markers as co-factors in interval map- 
ping of QTL (Jansen 1993; Jansen and Stare 1994; Zeng 
1994) are worth mentioning as examples. 

The objective of this paper is to demonstrate the 
advantage of the multi-trait analysis for different 
progeny types in estimating linkage between a QTL and 
a marker. Note, that with dense enough map of markers, 
single-marker analysis has approximately the same re- 
solution power as interval mapping (of course, only if 
one QTL from the chromsome in question segregates in 
the mapping population) (Knott and Haley 1992; Dar- 
vasi et al. 1993). 

General description of the method 

Consider first the simplest case of backcross progeny with a QTL 
(A/a) that influences two correlated traits, x and y. In the example 
presented in Fig. 1, the marginal distributions are strongly overlap- 
ping. Without any additional information and based only on the 
observed marginal distributions f(x) and f(y), one would hardly 
assume that the progeny is polymorphic for an oligogene. Neverthe- 
less, the presence of an oligogene can easily be seen from the joint 
distributionf(x, y). 

Joint analysis of several traits may be no less important in 
situations where the trait of interest (say x) is dependent on the locus 
A/a and is strongly correlated with another trait (y), while the latter 
one is independent of A/a. Even in this case, the additional informa- 
tion provided by measurements of y can dramatically increase the 
mapping precision of the gene A/a. Such correlations may be caused 
by the segregation of other genes, environmental effects and physio- 

Fig. 1 Join distributionf(x, y) of two correlated traits, x and y, in the 
backcross population. Even with the clear-cut bimodality off(x, y) 
[when the componentss (x, y) andfA ~ (x, y) are far enough apart and 
the correlation is high], the marginal distributions f(x) and f(y) are 
unimodal 

logical limitations. Figure 2 shows schematically some simple cases 
where two-trait analysis may give a resolution power that could not 
be achieved in a marker analysis of a single quantitative trait (with the 
same effect of the putative QTL and sample size). In a sense, the basic 
idea here is close to the classification methods based on the main 
component methods. Our previous Monte-Carlo study confirmed 
this expectation of an increase in resolution capacity of marker-QTL 
linkage analysis when the estimation procedure takes into account 
the correlations between the quantitative traits in marker groups 
(Korol et al. 1994). 

Technically, the algorithms of multi-trait analysis are similar to 
those of the single-trait situation (Titterington et al. 1985; Darvasi 
and Weller 1992; Korol et al. 1994). No special difficulties are ex- 
pected in developing multi-trait analogues of mapping based on the 
maximum likelihood (ML) method. The only difference is in the 
increased number of parameters to be estimated. We think that an 
improved resolution compensates for the latter drawback. In order to 
obtain a ML solution to the problem, we should specify the joint 
distribution of the considered correlated traits in QTL groups (say Aa 
and aa, in a backcross; AA, Aa and aa, in F2; AA and aa, in the case of 
recombinant inbred lines, RILs). 

In this paper we restrict our analysis to single-marker situations, 
while the proposed approach is no less effective within the framework 
of interval mapping of QTL (Korol et al., in preparation). Let A/a be 
the QTL affecting several quantitative traits (x, y, etc.), and M/m be 
the linked marker locus. Consider the case of two traits (x, y) and let 
(for the sake of certainty) the joint distributions fa, (x, y) = f l  (x, y), 
fA, (x, y) = f2 (x, y) and fAA (X, y) =f3 (X, y) be the two-dimensional 
normal. Then, the expected distributions in the three-marker groups, 
Smm (x, y) = S1 (x, y), SM, . (X, y) = $2 (x, y), and SMM (X, y) --- $3 (X, y) can 
be written as: 

3 
Si(x,y ) = ~ ~q(r)f~(x,y), (1) 

j - 1  

with the proportions ~u(r) being dependent on the unknown ex- 
change rate r between A/a and M/m. The form of 7cq(r) should be 
specified for each type of the progeny. In case of bivariate normality, 

f l  (x, y) = [2 rco'lxO'l~,(1 -- R2)] - 1/2 (2) 

• exp 2(1 - 2 - 1 -  + 

{ 1 r(x-~2) 2 2R2(x-~,)(y-;2)+ (y-72)2~ 
xexp  2(1 -R2)L o. 2-~x O'2x O-2Y O'2Y J ) '  

f3 (x,y) = [2rc~3xa3, (1 - R2)] -1/2 

1 ~ ( x -  23) a 2 R 3 (x -- )~3)(Y--'3) F (Y--y3)2 ~ 
xexp(  2 ( 1 -  2 ~ -  - -  , 

R3)L ~r3~ 03~a3, G3y A] 

Fig. 2a-d Some possible situations in two-trait analysis. An example 
is taken when the correlations between x and y within the groups are 
either the same and negative (a and b) or different: (c) negative and 
zero, (d) of opposite signs. The effects of the locus A/a are: (a) increase 
in both traits, (b d) increase in x and no effect in y 
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where xi, )~i, ai~, ~rly (i = 1, 2, 3) are the mean values and standard 
deviations of x and y in groups aa (i = 1), Aa (i = 2), and AA (i = 3); R i 
are the correlations between x and y in the groups. 

Log-likelihood of a sample with the sizes N~ of the marker groups 
can be written as: 

Nz 

lnL(| = ~ lnS 1 (xi, Yi) 
i = 1  

N2 N3 

+ ~ lnS 2 (xj, yj) + ~ lnS 3 (x~, Yk) + const, (3) 
j = l  /c=]  

where O is the vector of unknown parameters, e.g. for F 2 
O = {r,21,f:l,22,Y2,fc3,1J3,~71x, ffl~,G2x, G2y, a3x, C73r, R1, R2,R3,}, x 
and y with indices are the trait values of the corresponding genotypes. 
In some cases only two marker groups will be presented in the 
progeny and then only two sums will be presented in In L(O). 

Several types of progeny are considered below, including back- 
cross, F2 and recombinant inbred lines. 

Simulation procedure and ML.estimation 

Generating the data 

Monte-Carlo simulations were used to produce the "observations". 
For each situation and each combination of parameters studied 
100-200 repeated mapping populations have been generated using 
pseudo-random numbers. Normal distribution was used for the trait 
groups aa, Aa and AA, while any other density could be considered as 
well. To obtain normally distributed variables the inverse transform- 
ation to the normal distribution function has been employed. For 
comparative analysis of different methods and situations we used, 
where possible, one and the same set of data. In order to get a 
bivariate normal distribution with a preset correlation coefficient R, 
the approach described in Kleijnen (1974) was employed: x and y will 
have the desired joint distribution if y is simulated according to the 
following relationship: 

y - y = R %/a~ (x - if) + (1 - R z) Gy z, 

where z is a standard normal variable N(0,1). The composition of the 
marker groups (mixtures S i, i = 1, 2, 3) were modelled as trinomial 
distributions with proportions ~ij(r). For most of the experiments, 
parameter values used for simulations were in the range: 0.1 _< r _< 0.4 
0.5 _< dr = XA, -- X,, __< 2, 0 __< dy = YA, -- Y,, -< 1, ao, = 1, 0 __< Iel -< 0.95, 
N = 1000. 

Obtaining numerical solutions 

The target of this work was to compare the estimation approach 
described above with the single-trait analysis, or to put it more 
exactly, to estimate the gain in accuracy when the correlation between 
the quantitative traits is taken into account. As in our previous study 
concerned with the comparsion of different statistical approaches for 
accuracy of QTL-marker linkage estimation (Korol et al. 1994), we 
do not dwell enough in this study on the problems of numerical 
procedures of multiextremal, multidimensional optimization. The 
main objective here was to check how the correlation between the 
considered traits affects the closeness of the optimal points (represent- 
ing the estimate of the paramter vector 0) to the true parameter set 
used for simulation and/or to the sets corresponding to each 
simulated sample. For this specific goal, we do not have to search for 
the solution starting from arbitrary points. The simplest way to 
obtain the necessary estimates is to use as initial point in the optimi- 
zation procedure the parameter values equal to the "true" ones of the 
considered sample (e.g. Titterington et al. 1985). Based on numerical 
analysis of the described functionals, we found that for the combina- 
tions of the model parameters studied this initial point lies in the 
domain of the attraction of the global maximum of the ML-func- 

tional. Of course, it could not be true for small sample sizes (Titterin- 
gton et al. 1985). As tools for local optimization we employed different 
modifications of the gradient and Newton methods. 

Estimating the accuracy of the obtained solutions 

Usually, variances or standard errors of the estimates are employed as 
a means for efficiency comparison of the estimation procedures. 
However, in addition to random fluctuations around the mean, 
another possible source of distrubance, the bias of the estimates, 
should also be taken into account. Thus, one should simultaneously 
take care of the estimation variance and estimate bias. Moreover, 
each of these two components of the deviation of the estimates from 
the true values could depend on the level of the parameters. In our 
Monte-Carlo experiments, the simulated parameter values are fluc- 
tuating stochastically around their chosen expectations, while the 
estimates may, possibly, be biased. Thus, we need an integral indi- 
cator of the accuracy of the respective estimates. In order to allow for 
possible differences in biases of the estimates, we employed the 
absolute error of the estimate, averaged over the repeated experi- 
ments: 

n k = l  

where uk and uk are, respectively, the simulated ('occurred') and 
estimated values of the parameter u (i.e. u can be any component of the 

2 vector | say r, d, x,,, a,, etc). 

Results 

Backcross  p r o g e n y  

Bivar ia te  d i s t r i bu t i on  of t rai ts  x a n d  y in  each of the 
m a r k e r  groups ,  mm a n d  Mm, is a mix tu re  of two com-  

p o n e n t s , s  y) = f l  (x, y) andfaa (x ,  y) = f 2  (x, y): 

Smm(X,y ) = Sa(x ,y  ) = (1 - r) f~(x ,y)  + r f2 (x ,y  ), 

SMm(X,y ) = S2(x ,y  ) = rf~(x, y) + (1 - r) f2(x,y) ,  
(4) 

where  the densi t ies  f~ (x, y) a n d  f2 (x, y) are f rom Eq. 2. 
The  express ions  of Eqs. 4 are then  used to get the 
l ike l ihood  func t iona l  like Eq. 3. In  this fo rmula t ion ,  the 
p a r a m e t e r  space is 11-dimensional .  

M o s t  of the results  descr ibed be low are c once rned  
with the s i tua t ion  presen ted  in  Fig. 2b, where  the t rai t  x 
depends  on  the pu ta t ive  Q T L  (A/a) l inked  to the m a r k e r  
M/m.  The  second  trait ,  y, is a s sumed  to be i n d e p e n d e n t  
of the locus  A/a  while cor re la ted  wi th  x wi th in  each of 
the Q T  locus  groups ,  aa a n d  Aa (usually,  b u t  no t  
necessari ly,  with one  a n d  the same cor re l a t ion  coeffi- 
cient). F igu re  3 shows the d i s t r i bu t i on  of the M L  esti- 
ma tes  o f r  as d e p e n d e n t  on  the co r re l a t ion  R_~y wi th in  the 
Q T L  groups .  I t  is easy to see tha t  wi th  increased R ~  the 
prec is ion  of the es t imates  m o n o t o n i c a l l y  increases.  This  
is t rue also for all o ther  pa r ame te r s  (see examples  in  

Fig. 4). 
Even  smal l  quan t i t a t i ve  t ra i t  effects could  be es- 

t ima ted  sat isfactory if R~y is h igh enough .  Let, for 
example,  the effect of aa ~ A a  s u b s t i t u t i o n  o n  the t ra i t  x 
be d = 0.5 a n d  a~x = O-zx -~- 1, SO tha t  segregat ion  at locus 
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Fig. 4 The  dependence  of m e a n  absolu te  errors (6) of the  pa rame te r  
es t imates  in the  two-trai t  analysis  on correla t ion (R) between the 
trai ts  in case of a backcross  progeny.  Two h u n d r e d  replicates, each of 
size n = 1000, were s imula ted  at r ecombina t ion  rate r = 0.1, with  the  
dis tance between Q T L  groups  d ~ = x A ~ - x ~ = { 0 . 5 , 1 , 2 }  and  
dy = YAa - Y~, = 0, a x a ,  = ~x,~ = ayA~ = uy~a = 1. In  the ML- func -  
t lonal  all cr's were a s s u m e d  to be different, as were RA, and  R,, .  Open 
circles, black squares and  open squares cor respond  to d = 0.5, d = i, 
and  d = 2, respectively. 

Fig. 3 The  effect of corre la t ion  between trai ts  (R) on the  dis t r ibut ion 
of the  es t imates  of  r ecombina t ion  rate be tween the m a r k e r  and  QTL.  
For  the  case of a backcross  progeny,  200 replicates, each of size 
n = 1000, were s imula ted  at a r ecombina t ion  rate r = 10%, with the  
dis tance  be tween Q T L  groups  dx = XA,-- X,~ = {0.5, 1, 2} and  
dy = Yaa - Y,a = O, aXA~ = ~Xaa = OyAa = ~Ya, = l. In  the  ML- func -  
t ional  all o 's were a s s u m e d  to be different, as were RAo and  Raa. 

A/a is responsible for 6% of the total phenotypic vari- 
ance of x in the backcross progeny. Then, the mean 
absolute error of the M L  estimate of d is 
5d = 0.204 +__ 0.012, i.e. the relative error is about  40%. 
However, if an additional trait, y, independent of the 
locus A/a but closely correlated with x (R~y = 0.9), is 
taken into account, then the absolute error of d is 
reduced to 6d = 0.066 _4- 0.0037, i.e. three-fold. The cor- 
responding estimates 5r are 0.120 + 0.0045 and 0.053 4- 
0.0025 (recall that  the value r = 0.1 was used in this series 
of simulations). At Rxy = 0.95 we obtain 6d = 0.042 + 
0.0024 and 5r = 0.024 + 0.0015. With e x y  = - t - 0 . 9 5 ,  an 
acceptable precision is obtained even for such a small 
effect as d = 0.25 (segregation at A/a is responsible for 
less than 1.54% of the total phenotypic variance of x in 
the backcross): in this case 6d = 0.054 + 0.0044 and 
fir = 0.066 -4- 0.0036. 

The growth in resolution due to an accounting of the 
correlation between traits is also expected when both of 
the traits depend on the QTL in question, like in case a 
in Fig. 2. Our simulations have shown that  this is really 
the case. Some examples are presented in Table 1. Es- 

pecially important is the fact of a considerable decrease 
of br, 6d x and bdy with increased correlation between the 
traits controlled by QTL, no matter what the realtive 
rating of the considered variants, dx = 0.5 and dy = 0 and 
dx = 0.5 and dy = - 0.5, at each specific level of R~y. The 
same conclusion is also valid for other parameters (stan- 
dard variations of x and y within the QTL groups aa and 
Aa and correlations Rxy in these groups), which could be 
of interest in some formulations of the QTL mapping 
problem. 

One can assume that a further increase in the effi- 
ciency of the estimation procedure is possible with the 
accounting of additional quantitative traits correlated 
with the trait in question. Indeed, in simulation experi- 
ments with three traits, we found that such a tendency is 
manifested by all of the parameters, at least when the 
correlations between the traits are high enough 
(Table 2). In the case d~ = Xaa -- X,a = 0.5 of the example 
shown in Table 2, the mean absolute error of the esti- 
mates of r is reduced twofold when a second trait, y, 
correlated to x with R~y = 0.9 is also taken into account 
(as compared to the case R = 0). A further reduction of 
6r, threefold as compared to the case R = 0, is observed 
when a third trait correlated to the x trait, z, is included 
into the model (R~z = 0.9). 

It is well-known that with increased distance between 
the QTL and marker, the estimation accuracy of the 
genetic parameters falls down, the effect being especially 
pronounced for the estimate of r (Luo and Woolliams 
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Table 1 The dependence of mean absolute errors (5)" of the par- 
ameter estimates in the two-trait analysis on correlation (R) between 
the traits in the case of a backcross progeny. Two hundred replicates, 
each of size n = 1000, were simulated at recombination rate r -- 0.1, 

distance between QT locus groups d,=XA~--x~,=0.5 and 
dy = Ya~ -- y,~e{0, -- 0.5), crxA, = crx~ = ayA~ = cry,, = 1. In the ML- 
functional all cr's were assumed to be different, as well as RA~ , and 
eaa 

Variable parameter values used in simulations 
RAa = R~ = R 0 

0.5 0.5 0.5 
0.0 -0 .5  0.0 

0.6 0.9 
0.5 05 0.5 

-0 .5  0.0 -0 .5  

Mean absolute errors of the parameter estimates 
~r 114 -+ 4.4 97 -+ 3.1 97 -+ 3.8 54 -+ 2,5 53 -+ 2.5 10 _+ 0.6 
c~d~ 196 -+ 12 133 _+ 7.8 149 -+ 9.6 71 _+ 3.4 68 -+ 3.2 27 • 1.5 
6dy 55 _+ 5.8 137 -+ 8.0 49 -+ 4.0 67 • 3.4 38 • 2.3 27 _+ 1.4 
bGx~, 36 _+ 2.8 24 -+ 1.6 28 -+ 2.2 15 -+ 0.9 15 -+ 0.9 8 _+ 0.5 
6cry~, 20 _+ 1.4 25 -+ 1.8 16 -+ 1.1 14 _+ 0.9 11 -+ 0.7 7 -+ 0.4 
6R~ 34 _+ 2.7 45 _+ 2.9 23 -+ 1.5 25 -+ 1.2 7 -+ 0.4 4 -+ 0.3 
OcrXA, 38 -+ 2.9 24 -+ 1.8 29 -+ 2.1 15 -+ 0.9 14 -+ 0.8 8 _+ 0.4 
5cry~ 20+ 1.6 26-+2.0 16_+ 1.2 15_+0.8 12_+0.7 9-+0.5 
6RAa 29 _+ 2.2 46 _+ 3.1 21 _+ 1.5 26 • 1.4 7 -+ 0.4 5 -+ 0.3 

" The mean absolute errors of the estimates are multiplied by 1000 

Table 2 The effect of the number of correlated traits (k) on the 
accuracy of parameter estimates in case of a backcross progeny. Two 
hundred replicates, each of size n = 1000, were simulated at recom- 
bination rate r = 0.1, distance between QTL groups d~ = x4 . - x , ,s  
{0.5,1, 2}, dy = YA, -- Yo~ = 0, aXA, = aX,, = GyA, = cry,, = 1, In the 

three-dimensional case, in addition to the above, the conditions 
d z = za, - z~, = 0 and crZA, = crz,. = 1 were used in the simulations. In 
the ML-functional all ~'s were assumed to be different, as well as RA, 
and R,, 

Variable parameter values used in simulations 
k RA, = R,, = R 0.0 0.6 0.9 

d~ 0.5 1 2 0.5 1 2 0.5 1 2 

Mean absolute errors" of the parameter estimates 
fir 114.4 62.0 12.6 97.4 43.0 8.7 52.6 10.4 1.8 

+4.4 +2.3 -+0.8 -+3.8 -+2.3 +0.5 _+2.5 _+0.6 -+0.1 

c~d~ 196.1 140.1 45.6 149.0 96.2 26.7 66.1 30.3 4.5 
-+12.0 -+6.2 _+2.6 -+9.6 +5.2 _+1.6 -+3.7 _+1.7 -+0.4 

c~r 119.6 62.2 12.9 100.0 37.1 7.0 39.8 7.3 1.2 
-+4.5 +2.4 +0.8 -+3.5 -+2.1 _+0.4 -+2.2 -+0.4 • 

c~d~ 203.8 144.1 46.9 144.1 82.4 21.6 45.9 18.9 1.4 
-+11.9 -+6.2 -+2.8 -+8.2 __4,2 -+1.3 -+3.0 -+1.2 +0.1 

a The mean absolute errors of the estimates are multiplied by 1000 

1993; K o r o l  et al. 1994). A n  i m p o r t a n t  a d v a n t a g e  of  the  
m u l t i - t r a i t  ana lys i s  is d e m o n s t r a t e d  by  Fig.  5: a m u c h  
s lower  g r o w t h  of  the  a b s o l u t e  e r ro r s  wi th  r. T h e  h ighe r  
the  c o r r e l a t i o n ,  the  s t r o n g e r  the  effect. The  r e m a r k a b l e  
fact  is t ha t  w i th  h igh  e n o u g h  R~y, g)r does  n o t  inc rease  
wi th  r. 

T h e  las t  q u e s t i o n  we w o u l d  l ike to c o n s i d e r  here  is the  
effect of  i n e q u a l i t y  of  b i v a r i a t e  d i s t r i b u t i o n s  in the  Q T L  
g roups ,  Aa a n d  aa. As m e n t i o n e d  in the  I n t r o d u c t i o n ,  

z aza m a y  resul t  in t a k i n g  in to  a c c o u n t  the  fact  t ha t  0.,, # 
a se r ious  inc rease  in the  r e s o l u t i o n  p o w e r  in the  s ingle-  
t ra i t  ana lys i s  (for m o r e  de ta i l s  see K o r o l  et  al. 1994). O n  

2 a n d  this  fact  is the  c o n t r a r y ,  if for  e x a m p l e  a 2 ,  ~ 0.,, 
i gno red ,  a d r a m a t i c  r e d u c t i o n  in the  a c c u r a c y  will  be 
o b t a i n e d .  W e  f o u n d  the  s a m e  effect in the  t w o - d i m e n -  
s iona l  case. T h e  a n a l o g u e  of  v a r i a n c e  in the  mu l t i -  
d i m e n s i o n a l  case  is the  n o r m  of  the  v a r i a n c e - c o v a r i a n c e  

ma t r ix .  Therefore ,  we have  c h e c k e d  w h e t h e r  o r  n o t  an  
inc rease  in the  n o r m  of  this  m a t r i x  for  the  g r o u p  Aa, 
[ZA~ r, m a y  resul t  in a h ighe r  reso lu t ion .  T h r e e  poss ib i l i -  
t ies exist  to inc rease  fZA~l: (1) inc rease  in 0.2xa,; 
(2) inc rease  in 0 .2 YA,; (3) dec rease  in RXYA,. S t a r t i n g  f rom 
the case  0.2XA, = 0.2X,, = 1, 0.2yAa -= 0.2y,, --= 1 a n d  
RxYA,  = R x y , ,  = 0.7 ([ZA,] = JZ,a[ = 0.51), we cons ide r -  
ed  a lso  the  a b o v e  th ree  cases  wi th  i nc r ea sed  [ZA,I (as 
c o m p a r e d  to the  case  [ZAJ = 0.51) a n d  u n c h a n g e d  [Za~ I 
(Tab le  3). 

The  resul ts  p r e s e n t e d  in T a b l e  3 d e m o n s t r a t e  un-  
e q u i v o c a l l y  t ha t  an  inc rease  in the  level  of  v a r i a t i o n  in 
the  s e c o n d  g r o u p  ( increased  ]ZAa]) resul ts  in a be t t e r  
e s t i m a t i o n  a c c u r a c y  of  the  p a r a m e t e r s  c h a r a c t e r i z i n g  
the  Q T L  effect a n d  pos i t ion ,  no  m a t t e r  w h a t  the  cause  of  
the  i nc r ea sed  va r i a t i on :  i nc r ea sed  va r i ance  of  the  t r a i t  x 
c o n t r o l l e d  by  A/a,  i nc r ea sed  v a r i a n c e  of  the  c o r r e l a t e d  
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Fig. 5 The effect of correlation between traits (R) on the dependence 
of the estimation accuracy of the main genetic parameters in the 
two-trait analysis on the recombination rate (r) between the marker 
and QTL, Two hundered replicates, each of size n = 1000, were 
simulated at distance between QTL groups d~ = x ~  - x~ = 1 and 
d.y = YA, - Y,~ = O, aXA~ = crx,~ = crya, = cry~ = 1. In the ML-func- 
tlonal all a's were assumed to be different, as were Ra, and R,,, 
Open circles, black squares and open squares correspond to R = 0, 
R = 0.6, and R = 0.9, respectively 

with x trait y (which does not depend on locus a/a) or a 
reduced correlation Rxy in the group Aa) (compare the 
last three columns with the second one). However, the 
three variants of increased I~A,[ are not quantitatively 
equivalent with respect to the level of accuracy of the 
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estimates of the main parameters, r and d~. The highest 
benefit in terms of a decrease in fir and 6 d~, given the 
same IEAal > lEa,I, was obtained with a changed RxYA, 
(RxyA~ < RxyJ:  fir = 0.018 + 0.0010 and 6d:~ = 0.043 + 
0.0022, as compared to fir = 0.034 + 0.0020 and 3d~ = 
0.076 i 0.0041 in the case of IZAa I = lEa,I). The lowest 
decrease o f f r  and 5d~ was obtained with a2Xa, > ~r2x,~: 
fir = 0.025 • 0.0014 and g)d~ = 0.059 _+ 0.0031. 

Recombinant inbred lines (RILs) 

Here we have two marker groups, mm and MM, each 
consisting of genotypes aa and AA in the following 
proportions: 

y) = s (x, y) = [ t - A (x, y) + (r) f3 (x, y), 

sM (x, y) - -  s (x, y) = (x,  y) + [1 - y) ,  
(5) 

where the densities f/(x,y) and f3(x,y ) are from Eq. 2, 
re(r) = 4r/(1 + 6r) when brother-sister mating was prac- 
ticed and re(r)= 2r/(1 + 2r) with selfing (e.g. Simpson 
1989). One important advantage of RILs in QTL- 
marker linkage analysis is the possibility to increase the 
resolution power by a repeated progeny testing for the 
quantitative trait in question (Soller and Beckmann 
1990). The multi-trait approach provides an additional 
and still unemployed possibility to increase the accuracy 
of the estimates. From the viewpoint of parameter esti- 
mation, the case of RILs is equivalent to the backcross, 
but instead of r we have here re(r) as a mixture propor- 
tion. 

An important distinction of the proposed multi-trait 
analysis when applied to RILs is the necessity to take 
into account the effect of progeny size per line (k) on the 
within-QTL-groups (AA and aa) variation. Namely, 

Table 3 The effect of an increase 
in the variance-covariance 
matrix ]E~l on mean absolute [20,[ 1.0 
errors @)" of the parameter [ZAa[ 1.0 
estimates in the two-trait Ra~ 0.0 
analysis of a backcross progeny. RA" 0.0 
Two hundred replicates, each of 
size n = 1000, were simulated at crx~a 1.0 
recombination rate r = 0.1, crYa, 1.0 
distance between QTL groups axA, 1.0 
dx = xA, - x, ,  = 1 and ayAa 1.0 
dy = Y Aa - -  Yo. = 0 

a The mean absolute errors of 
the estimates are multiplied by 
1000 

VariabIe parameter values used in simulations 
0,51 0.51 0.51 0,51 
0,51 1.0 1.0 1.0 

0.7 0.7 0.7 0.7 
0,7 0.0 0.7 0.7 

1.0 1.0 1.0 1.0 
1.0 1.0 1.0 1.0 
1.0 1.0 1/, /0,51 1.0 
1.0 1.0 1:r 1/~0.51 

Mean absolute errors of the parameter estimates 
5r 62.0 _ 2.3 33.8 • 2.0 18.3 • 1.0 25.4 • 1.4 19.8 _+ 1.1 
3d x 140.0 _+ 6.2 76.4 ___ 4.1 43.1 • 2.2 59.2 • 3.1 51.7 __ 2.8 
5dr 36.7 • 1.9 36.8 • 2.1 32.9 • 1.8 35.6 4- 1,8 40.1 + 2.3 
&rxo, 36.0 • 1.9 20.2 • 1.2 11.9 • 0.7 17,5 • 1,0 17.2 • 1.0 
6ay,~ 13.9 • 0.7 11.8 • 0.7 10.8 • 0.6 11.9 ,., 0.7 14.1 • 0.8 
6Raa 22.3 -4-__ 1.3 16.2 • 0.9 12.6 • 0.6 12.2 • 0.6 11.5 • 0.6 
&rxA, 38.8 • 1.9 21.7 • 1.2 15.5 __+ 0.8 15.3 • 0.9 13.7 • 0.8 
5ayAa 13.6 • 0.7 11.5 • 0.7 10.6 -- 0.6 11.6 • 0.7 10.4 • 0.6 
6Raa 21.9 • 1.2 14.8 • 0.9 17.1 + 0.9 10.4 • 0.6 11.1 • 0.6 
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with increased k, the contribution of non-genetic com- 
ponents to the variance of each of the traits, x and y, and 
to covariance between them will decrease at a rate 
dependent on the heritability coefficients h 2 and hr 2. Let 
first k = 1. If rg and r~ are the coefficients of genetic and 
non-genetic correlation, respectively, between x and y, 
the same for both groups A A  and aa, then the within- 
group phenotypic correlation, R~y, will be: 

R ,  = r,h h, + t o , f i r -  - 

With k > 1, R~y = roh~h , + r~ x/(1 - h~)(1 - h,~, 

where h~ = kh2/[(k - l)h~ + 1], h~ = kh2 / [ (k -  1)hy z + 1]. 

The new values of the within-group variances can be 
written as 

~2x = o-2x [h 2 + (1 - h~)/k; 

a ~ y  = ~2y[h~ + (1 - hZr)/k]. 

Some numerical examples of the effect of parameter 
values on the efficiency of two-trait analysis are shown 
in Table 4. 

Several conclusions follow from the presented ma- 
terial: (1) with increased family size (k), the estimates are 
more accurate; (2) lower h e for the within-group vari- 
ances ( a 2 A A  and a 2 a a )  caused by genes of other chro- 
mosomes results in lower errors of the estimates. This 
seemingly paradoxical result can easily be understood if 
we recall that the reducing effect of increased family size 
k on variation between families is higher when h 2 is 
small; (3) for any combination of parameters, an increase 
in R~y leads to a higher resolution, and provided any 
fixed h 2, h~ and R~,, the higher the r o the better is the 
accuracy of estimation with increased k. 

F 2 progeny 

Two situations will be considered here, depending on 
dominance relations in the QTL. 

1. Full dominance at the Q TL 

Store(X, y) = S~(x, y) = (l - r)2L(x, y) 

+ l-1 - (1 - r )2 ] f2(x ,  y), 

Table 4 The dependence of 
mean absolute errors (c5) of the R 
parameter estimates in two-trait hZ k % 
analysis on correlation (R) 
between the traits in the case 
of recombinant inbred lines. 
Simulated were 100 replicates, c~r 
each with n = 200 lines and k 6dx 

1 individuals per line; distances 
between QTL groups w e r e  (~;XAA 
d~ = XAA -- x,a = 1 and (~ffYAA 

dr  = Y AA - -  Y,a = O, 5 
recombination rate between 

fir the QTL and marker r = 0.1. 20 
Two levels of heritability h 2 
for the "within QTL group 5 
variation" were considered to 20 bd~ 
be the same for both traits (x 
and y), with h a = hZ~ {0.25, 0.5} 0.25 
at k = 1; in this case the values 5 
of other parameters were as 20 b~TxAx  

follows: axaA = ~xa, = 
O'yAj " = OYaa = 1, RAA = R,a ~- 5 
Re {0, 0.3, 0.6}, the genotypic 6aYAA 
correlation coefficient rgA~ ~ 20 
r0,,e {0,0.6,0.9}. With k > 1 
(e.g. 5 or 20) R2~ = roh~hy + 5 
r e d ( 1  - -  hx  2) (1 - -  h~), where 20 6r 

t2 2 2 
h~ = khx/[(k  - 1)hx + 1], and 5 

t2 2 2 
h, = k h y / [ ( k -  1)hr + 1]. The 3d~ 
new values of the within QTL 20 
groups phenotypic variances 0.5 

�9 t2  2 2 wlll be a x = c r  x [ h ~ +  5 
(1 - h~)/k] and @2 = &rxa A 

2 2 % [h, + (1 - h~)/k] 20 

5 
(~6YAA 2O 

Variableparametervaluesusedinsimulations 
0.0 0.0 0.3 0.6 
0.0 0.6 0.6 0.6 

Mean absolute errors of the parameter estimates 
73.4 _-4- 4.7 73.4 _+ 4.7 70.5 +- 4.7 
348 +_ 18.l 348 • 18.1 340 +_ 19.3 

53.6+_3.8 
287 +_ 19.9 

0.6 
0.9 

53.6 +_ 3.8 
287 +_ 19.9 

55.4 +- 4.0 50:0 +- 3.9 46.7 +- 3.7 42.5 • 3.3 32.6 +- 2.7 

52.2 +- 3.9 38.8 _+ 3.9 36.3 _+ 3.0 34.6 ___+ 2.9 13.1 _+ 1.l 

244__+16.5 235_+17.6 228+-17.3 214+-16.4 183__+15.4 

225 • 16.8 194 +- 15.9 182 +- 15.5 176 +- 15.0 79.4 _+ 7.5 

77.8 +- 5.0 72.2 +_ 5.0 67.8 _+ 5.1 63.9 +_ 5.0 54.3 +_ 4.7 

74.2 __ 4.9 59.6 +__ 4.9 56.3 _+ 4.8 54.2 +- 4,6 28.9 _+ 3.0 

38.1 +- 3.6 36.8 __+ 3.4 36.7 _+ 3.5 35.1 +- 3,0 31.5 _+ 2.7 

34.8_+3.2 31.3+-2.7 31.3+-2.6 31.1+_2.6 17.8+_2.0 

40.5+3.5 34.6__+3.2 28.0+__2.7 20.6+__l.7 13.5+_1.1 

25.3+_2.5 16.6+_1.5 15.0+_1.4 13.9+_l.4 7.2+_0.5 

171 + 15.7 150 +_ 13.9 135 • 12.3 102 +_ 9.5 71.9 • 6.8 

93 +__ 10.9 61.6 +- 5.7 61.8 +- 6.7 58.5 __+ 6.5 24.5 +- 2.1 

64.4+-4.9 55.3+-4.5 48.8__+4.0 38.1+_3.4 29.1__+2.8 

41.8 _+ 4.0 28.3 +_ 2.3 28.2 +__ 2.5 26.9 +- 2.5 12.8 _+ 1.1 

27.2 _+ 2.6 24.7 • 2.2 24.8 +- 2.2 22.7 +- 2.0 17.2 +- 1.8 

19.4_+2.1 16.5_+1.5 16.4_+1.5 15.5+-1.4 6.5_+0.6 

95.9 + 6.5 95.9 -+_ 6.5 95.8 +__ 6.3 79.8 + 5.9 79.8 +- 5.9 
57.4 -+ 5.9 57.4 + 5.9 56.3 __+ 4.4 53.0 +- 4.9 53.0 +- 4.9 



sM, (x, y) = &(x, y) = r O  - r ) L  (x, y) 

+ [1 - r(1 - r)]f2(x, y), 

SMM(X, Y) = G(X, Y) = ?A(X, Y) + (1 -- r 5 3 L ( x ,  Y), 

where f~ (x, y) =f~a(x, y) and fz(x, y) = f a G ,  Y). 

2. General case: all three oenotypes are different 
at the QTL 

Then: 

Store(x, y) = SI(x, y) = (1 - r)2fl(x, y) 

+ 2o:(r)fz(X, Y) + rZfa(x,y), 

SM~(x, y) = S2(x, y) = ~(r)fl (x, y) 

+ I-0 - 2 (r)-IL(x, y) + c (r)L(x, y), 

SMM(X, y) = S3(x, y)= r2A(x, y) + 2a(r)f2(x, y) 

+(1-r)2f3(x ,y) ,  

where e(r )= r ( 1 -  r). The effect of correlation on the 
efficiency of the estimation procedure in the above 
situations was studied with the following parameter 
values: r = 0.1, d~ = XAA -- X~ = {1 and 2}, dy = 0, al~ = 
0~2x = 0"3x = 1, O-ly -~-- O'2y = (Y3y = 1,  R l x y  ~ Rzxy  = R3xy = 
{0, 0.6 and 0.9}. The data obtained are presented in 
(Table 5). Note, that the data generated according to 
dominance assumption fAA(X,y)=fA~(x,y) were ana- 
lysed by the full dominance model (1) as well as by full 
model (2). 

Different comparisons could be done on this data set, 
and for all of the parameters the main tendency within 

783 

each of the models can readily be seen: an increase in 
resolution of marker-QTL analysis resulting from the 
measurements of an additional trait (y) correlated with 
the main trait (x). 

Noteworthy also are some other effects. Dominance 
at the QTL (h~ = 0) leads to much lower deviations of 
the parameter estimates from their expectations [pro- 
vided the assumption hx = 0 is taken into account, i.e. 
model (1) is applied], with the size of the effect being 
dependent on d S G  and Rxy. The reason for this is clear. 
When fAa(X, y) coincides with either s y) or fAA(X, y) 
then the resolution is proportional to the distance be- 
tween the densitiesf,~(x, y) andfAA(X , y), all other things 
being equal. When fA,(x,y) is intermediate between 
s (x, y) and f~A(x, y) then it "dilutes" the initial differ- 
ence [betweens y) andfAa(X, y)]. Thus, it can easily 
be seen from Table 5 that in every case with QTL 
dominance and d = X~A -- X,, the precision of the par- 
ameter estimates is approximately the same as in the 
corresponding non-dominance case with only half of the 
above difference d (compare the cases with d~-- 1 and 
h~ = 0 and those with d~ = 2 and h x = 0.5d x = 1). Note 
also a reduction in the precision if in the case of full 
dominance (hx = 0) model (2) instead of(1) is used in the 
analysis (which will try to make a resolution into three 
components instead of two). 

Discussion 

It seems reasonable to execpt an increase in resolution of 
the QTL-marker linkage estimation procedures with 
increased discrepancy between the QTL groups. 
Usually, the effect of the quantitative trait gene (s) on the 
mean value of the trait in question is the target of such an 
analysis. Therefore, difference measures like (XAA -- G,)/ 

Table 5 The dependence of mean absolute errors (6) ~ of the pa- 
rameter estimates in the two-trait analysis on correlation (R) between 
the traits in the case of F 2 progeny. Two hundred replicates, each of 
size n = 1000, were simulated at recombination rate r = 0.1, distance 
between QTL groups d~ = XAA -- X~,e{1, 2}, h x = x a ,  --  x ~  {0.5,1}, 
dr = Y , u  - G ,  = O, hr = YA~ - Y~, = O, crxaA = ~XAa = a X ~  = 1, ayAA = 
ayA, = ~ry,, = i. In the ML-functional all o's were assumed to be 

different, as were RA,4, Raa and R,,. The variant designation is as 
following: F the condition h~ = 0.5d x was used in data simulation (i.e. 
additive action of A / a  is assumed) while in the ML-functional h~ was 
independent on d~, Q h x = 0 in the data simulation, and in the ML- 
functional h~ was an independent parameter, Qe the same as Q but 
with h~ known 

Variable parameter values used in simulations 
RAA = RA~ = R , ,  = R 0 0.6 0.9 

dx 1 2 1 2 1 2 

Mean absolute errors of the parameter estimates 
6r 99.7_+ 4.1 61.0_+2.5 90.7_+3,4 39.6_+2.1 36,8_+2.3 

F 6h~ 180 _+ 11.7 166 _+ 7.6 145 _+ 9.6 104 _+ 5.3 61.6 + 3.6 
6d~ 319 _+ 18.6 295 + 12.4 256 -+ 14.1 169 __+ 9.1 83.6 -+ 5.1 

6r 60.9 _+ 2.8 15.4 _+ 0,8 44.5 _+ 2.3 9.7 _+ 0.5 11.4 _-4- 0.6 
Q 6h~ 97.7 _+ 5.6 69.3 4-_ 3,7 73.4 _+ 4.1 65.9 -+ 3.3 60.5 -+ 3.2 

6d~ 148 _+ 6.7 79.0 + 4.1 108 _+ 5.1 64.1 _+ 3.3 52.6 -+ 2.9 

6r 49.9 -+ 2.5 13.8 _+ 0.7 35.1 +_ 2.0 8.0 _+ 0.4 9.1 -+ 0.5 
Qa 6d x 149 -+ 7.7 65.1 __+ 3.7 101 -+ 4.9 38.9 + 2.0 34.9 -+ 2.3 

8.2 + 0.5 
44.5 _+ 2.3 
57.9 + 3.2 

6.1_+0.3 
56.1 _+ 3.0 
46.t _+ 2.8 

2.5 _+ 0.2 
9.4 + 0.5 

a The mean absolute errors of the estimates are multiplied by 1000 
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o-~ are of interest when the resolution power of tests for 
QTL detecting and procedures of parameter estimation 
are considered. We suggested earlier that a strong in- 
crement in a discrepancy between QTL groups in seg- 
regating populations could be achieved when employ- 
ing joint distribution of a set of correlated QTs (Korol 
et al. 1987, 1994). Consequently, a serious gain in per- 
formance of QTL-marker analysis is expected on this 
basis, 

As we have seen above, with high correlations be- 
tween quantitative traits, a good resolution is possible 
even if the QTL groups (say, aa and Aa) are strongly 
overlapping for their marginal distributions. The advan- 
tage of the multi-trait analysis may be especially attract- 
ive when the QT factor (locus) in question influences 
several traits simultaneously. This corresponds to situ- 
ations of pleiotropy. Another possible class of situations 
where this analysis is relevant is close linkage between 
different loci affecting related traits. It may be especially 
important when a block of economically important 
genes is going to be transferred from one species to 
another and the recombination within the block become 
suppressed (e.g. Rick 1972; Zhuchenko and Korol 1985; 
Haley et al. 1993). 

What are the reasons for the increased resolution 
when correlation between the traits affected by the 
target QTL is taken into account. They can easily be 
understood from the following example of backcross 
situations presented in Table 6. Here the locus A/a 
affects both traits, x and y, with d~ = dy = d; in both 
groups, Aa and aa, o~ = ay = o and Rxy = R < O. It is 
clear that even in the case of zero correlation R, the 
resolution will be better if the second trait is taken into 
account (compare columns 1 and 2). The reason is the 
increased distance between the group centres [e.g. 

+ d~ = ,~f2d in the example presented in column 2]. 

Therefore, we can expect in this case that two-trait 
analysis with zero correlation is equivalent to the signle- 
trait situation with the distance between the group 
means multiplied by @ and the variances unchanged. 
These assumptions were tested using simulated data. 
The results shown in Table 6 confirm the expectations 
(compare 6r in columns 2 and 3). Let us discuss now the 
effect of correlation between x and y. Geometrical con- 
siderations allow us to assume that the resolution of our 
backcross bivariate mixtures Smm(X,y) and S~,,(x,y)  
into componentss y) andfA,(X , y) can be reduced to 
a single-trait resolution problem, with a new trait, x', 
being the first main component of the system (x, y) 
(provided that the respective ellipses in Aa and aa are 
parellel). This formulation will be equivalent to the 
initial one if we put dx = ~ + d 2 = ,/~d, and for both 
groups, Aa and aa o~ = C%x/1 + R. The closeness of 
columns 4 and 5 in Table 6 with respect to ~r indicates 
that this expectation holds as well. 

A reduction of the within-group variance seems to be 
the most important factor causing the increase in accu- 
racy when correlated traits are involved in the analysis. 
Neverthelesss, as was shown in Table 3, a decrease in 
correlation between the traits in one of the groups, say 
Aa, does not necessarily reduce the accuracy of the 
parameter estimates. On the contrary, an increase in 
variation within the Aa group manifested in an in- 
creased norm of the covariance matrix IZA~ I > IZ~[ may 
result in an increased precision, no matter what factor 
caused the increase in [ZA,I: reduced correlation RXYA, 
or increased variances a a XA~ or oz YA," Thus, it is reason- 
able to assume, as we did in single-trait analysis (Korol 
et al. 1994), that the resolution capacity of the marker 
analysis in the case of two correlated quantitative traits 
depends on the discrepancy between the bivariate dis- 
tributions f ,~(x,y) and fAa(X ,y ) ,  D(f~(x,y) ,  fa~(x,y). 

Table 6 Demonstration of the 
equivalence, with respect to 
the resolution power of the R~a 
marker-QTL linkage analysis, RA" 
of the effect of correlation d, 
between the traits within the dy 
QTL groups and the effect of ~XAa = ~xa 
reduced within-group variance ~YAa = aYa 
(a backcross progeny case is 
considered). Two hundred 
replicates, each of size n = 1000, Presen- 
were simulated at recombination tat• 
rate r = 0.1. According to the of the 
explanation given in the text, case 
one will expect the same gr 
values for the pairs of columns: 
2-3, and 4-5 ~r 

64 
6dy 
6tYXaa 
6oy.~ 
6R~ 
(~XAa 
3aYAa 
fiRm, 

Variable parameter values used in simulations 
0 0 0 -0 .8  0 -0 .8  
0 0 0 -0 .8  0 0.8 
1 1 x /2  1 x//2 0 
0 1 0 1 0 0 
1 1 1 1 x/0.2 1 
1 1 1 1 ~/1.8 1 

d~=~2 

=1 
k._.../d =1 1 

aa Aa aa Aa aa Aa aa Aa 

Mean absolute errors of the parameter estimates 
62.0 • 2.3 33.0 + 2.0 35.5 • 1.8 4.8 • 0.3 5.2 • 0.3 9.7 • 0.5 
140 + 6.2 75.0 • 4.1 103 • 5.0 20.1 • 1.0 7.6 + 0,4 14.4 • 0.7 
36.7 + 1.9 74.8 • 4.2 35.6 +_ 1.8 20.5 • 0.9 24.4 • 1.3 14.3 + 0.8 
36.0 + 1.9 21.3 • 1.2 36.5 • 1.9 6.8 + 0.4 7.6 + 0.4 5.0 • 0.3 
13.9 • 0.7 20.9 • 1.2 12.0 • 0.5 7.3 • 0.4 7.8 • 0.4 4.6 • 0.3 
22.4 • 1.3 35.7 • 2.1 19.6 • 1.0 5.9 • 0.3 14.9 • 0.8 7.0 • 0.4 
38.8 • 1.9 19.9 + 1.2 36.6 • 1.8 7.2 • 0.4 7.7 • 0.4 5.0 _+ 0.3 
13.6_+0.7 22 .5•  12.0_+0.6 7.2_+0.4 7 .9__+0.4  4.6• 
21.9• 38.4 • 2.1 19.8• 5.8• 15.6• 6.7• 0.4 
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While we did not calculate the effect of increased I ZAa I 
on O(faa,fAa), this assumption seems to be a reasnable 
explanation of the estimates presented in Table 3. This 
means, that the analogy with the method of main com- 
ponents is rather approximate here, which can easily be 
demonstrated by the formal example shown in the last 
column of Table 6. Here the mixtures Smm(X,y) and 
S~r y) are resolved into the component densities fa a 
and fA~, which differ from each other only due to dif- 
ferences in Rxy. 

The multi-trait approach could be no less important 
in situations where the trait of interest (say x) is depend- 
ent on the QTL in question (A/a) and is strongly corre- 
lated with another trait (y), the latter being independent 
of A/a. As we could see, in this case too the additional 
information provided by measurements of y increases 
dramatically the mapping precision of the locus A/a, no 
matter what type of mapping population was consider- 
ed (backcross, F 2 etc). 

Such correlations may be caused by the segregation 
of other genes, environmental effects and physiological 
limitations. As examples, trait pairs like "grain weight - 
protein level" or "milk production - fat content" could 
be mentioned. Due to the high cost of molecular marker 
typing, many quantitative traits are usually measured 
within one experiment, so that the needed structure of 
data for the proposed QTL mapping approach is not an 
exception. 

Another application is studies of reaction norms of 
the trait of interest to different environmental condi- 
tions. The rationality of such an approach is due to the 
well-known dependence of the quantitative trait ex- 
pression on environment. The estimates of QTL effects 
are usually based on the identification of segregating 
progeny under some ecological conditions and may be 
entirely different from those obtained under other con- 
ditions. The phenomenon of genotype-environment in- 
teraction can be analysed based on marker approach. 
The appropriate analysis may reveal QTL affecting: (1) 
the 'developmental potential' of a trait under optimal 
environmental conditions; (2) the stability of the trait in 
the face of limiting conditions (with little or no effect 
under optimum environment); (3) both the 'developmen- 
tal potential' and stability simultaneously (Korol et al., 
1994). In addition to such a formulation, if a set of 
genotypes (e.g., RILs or vegetative clones of an F2) could 
be tested under different conditions, then the resulting 
measurements of one trait in these conditions can be 
considered as a multi-trait set (Falconer, 1981) and 
treated by our procedures. This will result in a higher 
efficiency of information extraction from the data than 
the usual single-trait analysis can provide. 

It is clear that the multi-trait approach of marker- 
QTL linkage analysis could be also used within the 
framework of interval mapping of QTL. Our results 
(Korol et al., in preparation) show that this is indeed a 
promising way to elevate the resolution power of the 
interval procedures. It is worth mentioning that multi- 
variate analysis has been successfully used to increase 

the precision of QTL mapping (e.g. Jansen and Stam 
1994; Zeng 1994). However, our multi-trait approach 
opens an additional and yet unexploited possibility for 
further increase in resolution. 
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