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Abstract An efficient approach to increase the reso-
[ution power of linkage analysis between a quantitative
trait locus (QTL) and a marker is described in this paper.
It is based on a counting of the correlations between the
QTs of interest. Such correlations may be caused by the
segregation of other genes, environmental effects and
physiological limitations. Let a QT locus A/a affect two
correlated traits, x and y. Then, within the framework of
mixture models, the accuracy of the parameter estimates
may be seriously increased, if bivariate densities f,,(x, y),
faa(x,y) and f,,(x,y) rather than the marginals are
considered as the basis for mixture decomposition. The
efficiency of the proposed method was demonstrated
employing Monte-Carlo simulations. Several types of
progeny were considered, including backcross, F, and
recombinant inbred lines. It was shown that provided
the correlation between the traits involved was high
enough, a good resolution to the problem is possible
even if the QTL groups are strongly overlapping for
their marginal densities.
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Introduction

The resolution power of marker-based analysis of quan-
titative traits is the major factor affecting the practical
importance of quantitative trait locus (QTL) mapping.
A detailed discussion of the issues concerning the power
of tests for detecting linkage and designing experiments
can be found in many publications (e.g. Soller and
Genizi 1978; Demenais et al. 1988; Lander and Botstein

Communicated by F. Salamini

Y. 1. Ronin + V. M. Kirzhner - A. B. Korol (<)
Institute of Evolution, University of Haifa, Mount Carmel, Haifa
31905, Israel

1989; Soller and Beckmann, 1990; Weller and Wyler
1992; Carbonell et al. 1993). The precision of the pa-
rameter estimates depends on the effect of the QTL in
question relative to the total phenotype variance of the
trait. Thus, with a QTL (A4/a) segregating in a backcross
progeny, in the case of equal variances in the groups 4a
and aa (63, = 62, = %), the ratio (x4, — x,,)/0 is of pri-
mary interest when discussing the power of tests for
marker-QTL linkage or the estimation precision of the
QT locus effect d =x,, — x,, and recombination rate
between A/a and a linked marker. Therefore, it is ex-
pected that lowering the trait variance, e.g. by progeny
testing, could increase the resolution power (Thoday
1967; Soller and Beckmann 1990). What can happen if
the variability in one of the groups, say in Aa, grows?
Intuitively, one would expect a decrease in resolution
proportional to the increase in ¢7,. However, we found
that if the distance d = x ,, — x,,, between the means x ,,
and x,, is small, then the precision of the estimates
increases with increasing 62, if 62, # o2, is taken into
account (Korol et al. 1994).

Among other possibilities for improving the preci-
sion of mapping, it is worth mentioning the multimarker
(interval) approach (Lander and Botstein 1989; Haley
and Knott 1992; Martinez and Curnow 1992), selective
sampling (Lebowitz et al. 1987; Carey and Williamson
1991; Darvasi and Soller 1992), sequential analysis
(Morton 1955; Boehnke and Moll 1989; Motro and
Soller 1993; Korol et al. 1994b) and simultaneous analy-
sis of several QTL (including linked ones) affecting the
target trait (Jansen 1993; Jansen and Stam, 1994; Zeng
1994).

Under certain conditions, one can expect to increase
the discrepancy between the QTL groups (Aa and aa, for
a backcross case) based on the analysis of joint distribu-
tion of several traits [say f(x, y)] even if the groups are
strongly overlapping in their marginal distributions f'(x)
and f(y). An increased discrepancy between the compo-
nent distributions of the QT in the segregating progeny
may result in a higher accuracy of linkage estimation
between the marker and QTL. Indeed, earlier we have



shown that with high enough correlations between
quantitative traits, a good resolution is possible, in
principle, even if the QTL groups are strongly overlap-
ping for their marginal distributions (Korol et al. 1987,
1994b). 1t should be stressed here that the basic idea of
using correlations to increase the performance of analy-
sis is rather common in genetics. In this connection,
such situations as genotype-environment interaction
(Falconer 1981), divergence of populations or cultivars
(Arunachalam, 1981), index selection (Lin 1978),
marker-assisted breeding (LLande and Thompson 1990),
the use of other markers as co-factors in interval map-
ping of QTL (Jansen 1993; Jansen and Stam 1994; Zeng
1994) are worth mentioning as examples.

The objective of this paper is to demonstrate the
advantage of the multi-trait analysis for different
progeny types in estimating linkage between a QTL and
amarker. Note, that with dense enough map of markers,
single-marker analysis has approximately the same re-
solution power as interval mapping (of course, only if
one QTL from the chromsome in question segregates in
the mapping population) (Knott and Haley 1992; Dar-
vasi et al. 1993).

General description of the method

Consider first the simplest case of backcross progeny with a QTL
(A/a) that influences two correlated traits, x and y. In the example
presented in Fig. 1, the marginal distributions are strongly overlap-
ping. Without any additional information and based only on the
observed marginal distributions f(x) and f{y), one would hardly
assume that the progeny is polymorphic for an oligogene. Neverthe-
less, the presence of an oligogene can easily be seen from the joint
distribution f(x, y)-

Joint analysis of several traits may be no less important in
situations where the trait of interest (say x) is dependent on the locus
Afa and is strongly correlated with another trait (y), while the latter
one is independent of A/a. Even in this case, the additional informa-
tion provided by measurements of y can dramatically increase the
mapping precision of the gene A/a. Such correlations may be caused
by the segregation of other genes, environmental effects and physio-

Fig.1 Join distribution f(x, y) of two correlated traits, x and y, in the
backcross population. Even with the clear-cut bimodality of f(x, y)
[when the componentsf,, (x, y) and f,, (x, y) are far enough apart and
the correlation is high], the marginal distributions f(x) and f(y) are
unimodal
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logical limitations. Figure 2 shows schematically some simple cases
where two-trait analysis may give a resolution power that could not
be achieved in a marker analysis of a single quantitative trait (with the
same effect of the putative QTL and sample size). In a sense, the basic
idea here is close to the classification methods based on the main
component methods. Our previous Monte-Carlo study confirmed
this expectation of an increase in resolution capacity of marker-QTL
linkage analysis when the estimation procedure takes into account
the correlations between the quantitative traits in marker groups
(Korol et al. 1994).

Technically, the algorithms of multi-trait analysis are similar to
those of the single-trait situation (Titterington et al. 1985; Darvasi
and Weller 1992; Korol et al. 1994). No special difficulties are ex-
pected in developing multi-trait analogues of mapping based on the
maximum likelihood (ML) method. The only difference is in the
increased number of parameters to be estimated. We think that an
improved resolution compensates for thelatter drawback. In order to
obtain a ML solution to the problem, we should specify the joint
distribution of the considered correlated traits in QTL groups (say Aa
and aa, in a backcross; A4, Aa and aa,in F; A4 and aqa, in the case of
recombinant inbred lines, RILs).

In this paper we restrict our analysis to single-marker situations,
while the proposed approach is no less effective within the framework
of interval mapping of QTL (Korol et al., in preparation). Let A/a be
the QTL affecting several quantitative traits (x, y, etc.), and M/m be
the linked marker locus. Consider the case of two traits (x, y) and let
(for the sake of certainty) the joint distributions f,,(x, y) = f; (x, ),
S0 =f(x, and f,,(x,y)=f5(x, y) be the two-dimensional
normal. Then, the expected distributions in the three-marker groups,
S (6, 1) = S1 (%, ¥), Sapm (%, ) = S5 (X, y), and S5, (X, ¥) = S5 (x, y) can
be written as:

3
S:06p) = ) ) f; (% p) {H
j=1

with the proportions 7;(r) being dependent on the unknown ex-
change rate r between A/a and M/m. The form of z;;(r) should be
specified for each type of the progeny. In case of bivariate normality,
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Fig. 2a-d Some possible situations in two-trait analysis. An example
is taken when the correlations between x and y within the groups are
either the same and negative (a and b) or different: (¢) negative and
zero, (d) of opposite signs. The effects of the locus A/a are: (a) increase
in both traits, (b—d) increase in x and no effect in y
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where X, y, 6,,, 0, (i=1,2,3) are the mean values and standard
deviations of x and y in groups aa (i = 1), Aa (i = 2), and 44 (i =3); R,
are the correlations between x and y in the groups.

Log-likelihood of a sample with the sizes N, of the marker groups
can be written as:

Ny

nL(®) =73 InS(x,y,)
i=1

i=

N2 Ns

+ Z InS, (x;,y) + Z InS; (x, y;) + const, (3)
=1 K=

= =1

where ® is the vector of unknown parameters, e.g. for F,
O ={r, %y, J1, %5, V3, X3, T2, 0 0135025 025 033 03y Ry, R, Ry} x
and y with indices are the trait values of the corresponding genotypes.
In some cases only two marker groups will be presented in the
progeny and then only two sums will be presented in In L(®).

Several types of progeny are considered below, including back-
cross, I, and recombinant inbred lines.

Simulation procedure and ML-estimation
Generating the data

Monte-Carlo simulations were used to produce the “observations”.
For each situation and each combination of parameters studied
100-200 repeated mapping populations have been generated using
pseudo-random numbers. Normal distribution was used for the trait
groups aa, Aa and AA, while any other density could be considered as
well. To obtain normally distributed variables the inverse transform-
ation to the normal distribution function has been employed. For
comparative analysis of different methods and situations we used,
where possible, one and the same set of data. In order to get a
bivariate normal distribution with a preset correlation coefficient R,
the approach described in Kleijnen (1974) was employed: x and y will
have the desired joint distribution if y is simulated according to the
following relationship:

y—y=RoJoix—%+(1—RYa,z

where z is a standard normal variable N (0, 1). The composition of the
marker groups {mixtures S, i =1,2,3) were modelled as trinomial
distributions with proportions 7;;(r). For most of the experiments,
parameter values used for simulations were in the range: 0.1 <r < 0.4
05<d, =%2— %0 < 2,02d, = Yy — Vaa £ 1,04y = 1,0 <|R] < 0.95,
N =1000.

Obtaining numerical solutions

The target of this work was to compare the estimation approach
described above with the single-trait analysis, or to put it more
exactly, to estimate the gain in accuracy when the correlation between
the quantitative traits is taken into account. As in our previous study
concerned with the comparsion of different statistical approaches for
accuracy of QTL-marker linkage estimation (Korol et al. 1994), we
do not dwell enough in this study on the problems of numerical
procedures of multiextremal, multidimensional optimization. The
main objective here was to check how the correlation between the
considered traits affects the closeness of the optimal points (represent-
ing the estimate of the paramter vector ®) to the true parameter set
used for simulation and/or to the sets corresponding to each
simulated sample. For this specific goal, we do not have to search for
the solution starting from arbitrary points. The simplest way to
obtain the necessary estimates is to use as initial point in the optimi-
zation procedure the parameter values equal to the “true” ones of the
considered sample (e.g. Titterington et al. 1985). Based on numerical
analysis of the described functionals, we found that for the combina-
tions of the model parameters studied this initial point lies in the
domain of the attraction of the global maximum of the ML-func-

tional. Of course, it could not be true for small sample sizes (Titterin-
gtonet al. 1985). As tools for local optimization we employed different
modifications of the gradient and Newton methods.

Estimating the accuracy of the obtained solutions

Usually, variances or standard errors of the estimates are employed as
a means for efficiency comparison of the estimation procedures.
However, in addition to random fluctuations around the mean,
another possible source of distrubance, the bias of the estimates,
should also be taken into account. Thus, one should simultaneously
take care of the estimation variance and estimate bias. Moreover,
each of these two components of the deviation of the estimates from
the true values could depend on the level of the parameters. In our
Monte-Carlo experiments, the simulated parameter values are fluc-
tuating stochastically around their chosen expectations, while the
estimates may, possibly, be biased. Thus, we need an integral indi-
cator of the accuracy of the respective estimates. In order to allow for
possible differences in biases of the estimates, we employed the
absolute error of the estimate, averaged over the repeated experi-
ments:

where #, and 4, are, respectively, the simulated (‘occurred’) and
estimated values of the parameter u (i.e. u can be any component of the
vector ©, say r, d, X, 0o LC).

Results
Backcross progeny

Bivariate distribution of traits x and y in each of the
marker groups, mm and Mm, is a mixture of two com-

ponentsaﬁza(xs )’) :'fl (x> y) andea(x, y) =f2 (xa ,V)
Sum(%, 1) = 8106, 3) = (1 = 1) f; (6, y) + rf5(x, ),

SMm(xs y) = Sz(xa y) = rfl(x> y) + (1 - V)fz(xa y)>

“

where the densities f; (x, y) and f,(x, y) are from Eq. 2.
The expressions of Egs.4 are then used to get the
likelihood functional like Eq. 3. In this formulation, the
parameter space is 11-dimensional.

Most of the results described below are concerned
with the situation presented in Fig. 2b, where the trait x
depends on the putative QTL (4/a) linked to the marker
M /m. The second trait, y, is assumed to be independent
of the locus A/a while correlated with x within each of
the QT locus groups, aa and Aa (usually, but not
necessarily, with one and the same correlation coeffi-
cient). Figure 3 shows the distribution of the ML esti-
mates of ¥ as dependent on the correlation R, , within the
QTL groups. It is easy to see that with increased R, the
precision of the estimates monotonically increases. This
is true also for all other parameters (see examples in
Fig. 4).

Even small quantitative trait effects could be es-
timated satisfactory if R,, is high enough. Let, for
example, the effect of aa — Aa substitution on the trait x
bed =0.5and o, = 7,, = 1, so that segregation at locus
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Fig. 3 The effect of correlation between traits (R) on the distribution
of the estimates of recombination rate between the marker and QTL.
For the case of a backcross progeny, 200 replicates, each of size
n = 1000, were simulated at a recombination rate r = 10%, with the
distance between QTL groups d,=x,,—x,,=1{05,1,2} and
A=Y 40— Vaa =0, 0x4,=0X,,=0y,,=0y,=1 In the ML-func-
tional all ¢’s were assumed to be different, as were R ,, and R,.

AJa is responsible for 6% of the total phenotypic vari-
ance of x in the backcross progeny. Then, the mean
absolute error of the ML estimate of d is
0d =0.204 - 0.012, i.e. the relative error is about 40%.
However, if an additional trait, y, independent of the
locus A/a but closely correlated with x (R,,=0.9), is
taken into account, then the absolute error of d is
reduced to 8d = 0.066 + 0.0037, i.e. three-fold. The cor-
responding estimates dr are 0.120 + 0.0045 and 0.053 +
0.0025 (recall that the value r = 0.1 was used in this series
of simulations). At R, =0.95 we obtain 6d =0.042 &
0.0024 and or = 0.024  0.0015. With R, = +0.95, an
acceptable precision is obtained even for such a small
effect as d = 0.25 (segregation at A/a is responsible for
less than 1.54% of the total phenotypic variance of x in
the backcross): in this case 6d =0.054 + 0.0044 and
or = 0.066 + 0.0036.

The growth in resolution due to an accounting of the
correlation between traits is also expected when both of
the traits depend on the QTL in question, like in case a
mn Fig. 2. Our simulations have shown that this is really
the case. Some examples are presented in Table 1. Es-
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Fig. 4 The dependence of mean absolute errors (J) of the parameter
estimates in the two-trait analysis on correlation (R) between the
traits in case of a backcross progeny. Two hundred replicates, each of
size n = 1000, were simulated at recombination rate r = 0.1, with the
distance between QTL groups d,=x,,—x,,={051,2} and
dy=Y447 Yaa =05 0X4g=0%Xs3=0Y,,=0Y,,=1. In the ML-func-
tional all ¢’s were assumed to be different, as were R ,, and R . Open
circles, black squares and open squares correspond to d =0.5,d =1,
and d = 2, respectively.

pecially important is the fact of a considerable decrease
of or, éd, and od, with increased correlation between the
traits controlled by QTL, no matter what the realtive
rating of the considered variants,d, = 0.5and d, = 0 and
d,=0.5and d, = —0.5, at each specific level of R . The
same conclusion is also valid for other parameters (stan-
dard variations of x and y within the QTL groups aa and
Aa and correlations R, in these groups), which could be
of interest in some formulations of the QTL mapping
problem.

One can assume that a further increase in the effi-
ciency of the estimation procedure is possible with the
accounting of additional quantitative traits correlated
with the trait in question. Indeed, in simulation experi-
ments with three traits, we found that such a tendency is
manifested by all of the parameters, at least when the
correlations between the traits are high enough
(Table 2). In the case d,, = x ,, — x,, = 0.5 of the example
shown in Table 2, the mean absolute error of the esti-
mates of r is reduced twofold when a second trait, y,
correlated to x with R, = 0.9 is also taken into account
(as compared to the case R =0). A further reduction of
or, threefold as compared to the case R = 0, is observed
when a third trait correlated to the x trait, z, is included
into the model (R,, = 0.9).

Itis well-known that with increased distance between
the QTL and marker, the estimation accuracy of the
genetic parameters falls down, the effect being especially
pronounced for the estimate of r (Luo and Woolliams
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Table 1 The dependence of mean absolute errors (9)* of the par-
ameter estimates in the two-trait analysis on correlation (R) between
the traits in the case of a backcross progeny. Two hundred replicates,
each of size n = 1000, were simulated at recombination rate r = 0.1,

distance between QT locus groups d,=x,,—x, =05 and
dy=y4,— y,me{O —0.5), 0,4, =0X,, =0V 4, = Yy = 1.'In the ML-
functional all o’s were assumed to be different, as well as R, and
R

aa

Variable parameter values used in simulations

R,.=R,=R 0 0.6 0.9
d, 0.5 0.5 0.5 0.5 0.5 0.5
d, 0.0 —0.5 0.0 -05 0.0 —05
Mean absolute errors of the parameter estimates
or 114 +44 97 +3.1 97+3.8 54425 53+25 10+0.6
od, 196 + 12 133+7.8 149+ 9.6 71134 68 4 3.2 27415
od, 55+58 137+ 8.0 49+4.0 67434 38+23 27+ 14
dox,, 36+28 24+ 1.6 28+22 15+09 15+09 8§+0.5
00, 20+14 25+138 16 +1.1 14+09 11+0.7 7+04
OR,, 34+27 45+29 23+15 25+12 7404 4+03
00X 4, 38+29 24+18 29+21 15409 14408 8§+ 04
00V, 20+ 1.6 26+20 16412 15408 12+07 9+05
4a 29422 46+ 3.1 21+15 264 1.4 7404 5+03

2 The mean absolute errors of the estimates are multiplied by 1000

Table 2 The effect of the number of correlated traits (k) on the
accuracy of parameter estimates in case of a backcross progeny. Two
hundred replicates, each of size n = 1000, were simulated at recom-
bination rate » = 0.1, distance between QTL groups d, = x4, — X,

three-dimensional case, in addition to the above, the conditions
d,=z,,—z,=0andoz,, =gz, =1were used in the simulations. In
the ML-functional all o’s were assumed to be different, as well as R ,,
and R,

{051,2}, dy=y,— Vo =0,6X4,= 60X, =0y 4, =0V, =1. In the
Variable parameter values used in simulations
k R, =R,=R 0.0 0.6 0.9
d, 0.5 1 2 0.5 1 2 0.5 1 2
Mean absolute errors® of the parameter estimates
or 1144 62.0 12.6 97.4 43.0 8.7 52.6 104 1.8
+44 +2.3 +0.8 +338 +2.3 +05 +2.5 +0.6 +0.1
2
dd., 196.1 140.1 45.6 149.0 96.2 26.7 66.1 303 45
+12.0 +6.2 126 19.6 +52 +1.6 +3.7 +1.7 +0.4
or 119.6 62.2 129 100.0 371 7.0 39.8 7.3 1.2
+4.5 +24 +0.8 +35 +2.1 +04 +2.2 +04 +0.1
3
dd, 203.8 144.1 46.9 144.1 82.4 21.6 459 18.9 14
+11.9 +62 +2.8 +82 +42 +13 +3.0 +1.2 +0.1

2 The mean absolute errors of the estimates are multiplied by 1000

1993; Korol et al. 1994). An important advantage of the
multi-trait analysis is demonstrated by Fig. 5: a much
slower growth of the absolute errors with . The higher
the correlation, the stronger the effect. The remarkable
fact is that with high enough R, or does not increase
with r.

The last question we would like to consider here is the
effect of inequality of bivariate distributions in the QTL
groups, Aa and aa. As ment1oned in the Introduction,
taking into account the fact that o2, # 2, may result in
a serious increase in the resolution power in the single-
trait analysis (for more details see Korol et al. 1994). On
the contrary, if for example ¢ ha F o2, and this fact is
ignored, a dramatic reduction in the accuracy will be
obtained. We found the same effect in the two-dimen-
sional case. The analogue of variance in the multi-
dimensional case is the norm of the variance-covariance

matrix. Therefore, we have checked whether or not an
increase in the norm of this matrix for the group Aa,
|Z,.], may result in a higher resolution. Three poss1b111-
ties exist to 1ncrease [, (1) increase in o2x,,;
(2)increase in 6y ,,; (3) decrease in Rxy ,,. Starting from
the case 02x,,=0"X,=1, 0*Yu=0"Y,=1 and
Rxy,, = Rxy,, = 0.7 (|12, = [£,,] = 0.51), we consider-
ed also the above three cases with increased |X,,] (as
compared to the case |Z,,| = 0.51) and unchanged [Z,,|
{Table 3).

The results presented in Table 3 demonstrate un-
equivocally that an increase in the level of variation in
the second group (increased [X,,|) results in a better
estimation accuracy of the parameters characterizing
the QTL effect and position, no matter what the cause of
the increased variation: increased variance of the trait x
controlled by A/a, increased variance of the correlated
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Fig.5 The effect of correlation between traits (R) on the dependence
of the estimation accuracy of the main genetic parameters in the
two-trait analysis on the recombination rate (r) between the marker
and QTL. Two hundered replicates, each of size n=1000, were
simulated at distance between QTL groups d,=x,, ~x,, =1 and
dy=y4— V=0, 06X 4,=0X,, =0y ,,=0y,,= 1. In the ML-func-
tional all ¢’s were assumed to be different, as were R, and R,,.
Open circles, black squares and open squares correspond to R =0,
R=0.6,and R = 0.9, respectively

with x trait y (which does not depend on locus a/a) or a
reduced correlation Rxy in the group Aa) (compare the
last three columns with the second one). However, the
three variants of increased |X,,| are not quantitatively
equivalent with respect to the level of accuracy of the
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estimates of the main parameters, r and d,. The highest
benefit in terms of a decrease in ér and dd,, given the
same |Z,,| > |Z,,l, was obtained with a changed Rxy ,,
(Rxy 4, < Rxy,,): or =0.018 +0.0010 and dd, = 0.043 +
0.0022, as compared to ér = 0.034 + 0.0020 and dd, =
0.076 + 0.0041 in the case of |X,,| =(Z,.). The lowest
decrease of 6r and dd, was obtained with 0% x ,, > 62 x,:
or =0.025 + 0.0014 and 6d,, = 0.059 & 0.0031.

Recombinant inbred lines (RILs)

Here we have two marker groups, mm and MM, each
consisting of genotypes aa and A4 in the following
proportions:

Smm(xa )’) = Sl(xa y) = [1 - TE(V)]fl(X, y) + n(r)f3(x, y)a

Sum6y) = 83(x, y) = n(r) f1 (x, y) + [1 = ()1 fa(x, y),(s

where the densities f;(x, y) and f3(x,y) are from Eq. 2,
n(r) = 4r/(1 + 6r) when brother-sister mating was prac-
ticed and n(r)=2r/(1 + 2r) with selfing (e.g. Simpson
1989). One important advantage of RILs in QTL-
marker linkage analysis is the possibility to increase the
resolution power by a repeated progeny testing for the
quantitative trait in question (Soller and Beckmann
1990). The multi-trait approach provides an additional
and still unemployed possibility to increase the accuracy
of the estimates. From the viewpoint of parameter esti-
mation, the case of RILs is equivalent to the backcross,
but instead of r we have here n(r) as a mixture propor-
tion.

An important distinction of the proposed multi-trait
analysis when applied to RILs is the necessity to take
into account the effect of progeny size per line (k) on the
within-QTL-groups (A4 and aa) variation. Namely,

Table 3 The effect of an increase
in the variance-covariance

Variable parameter values used in simulations

matrix |2 .| on mean absolute R L0 0.51 0.51 0.31 051
errors (5)“A of the parameter 1% 1l L0 0.51 10 10 10
estimates in the two-trait R 0.0 0.7 0.7 0.7 0.7
analysis of a backcross progeny. RZZ 0.0 0.7 0.0 0.7 0.7
Two hundred replicates, each of “ '
size n = 1000, were simulated at 0%, L0 1.0 10 1.0 1.0
recombination rate r = 0.1, Y aa 1.0 L0 1.0 10 L0
distance between QTL groups 0X 4, 10 1.0 1.0 1/,/0.51 L0
d,=x,—x,=1 and OV aa L0 1.0 1.0 1.0 1/,/0.51
d,= a Yaa = 0
Y Mean absolute errors of the parameter estimates
or 620423 338420 183+ 1.0 254+14 19.8+1.1
od, 140.04+6.2 7644+ 4.1 431422 592431 51.7+28
5dy 36.7+19 36.8 +2.1 329418 356118 40.1+23
00X, 360+ 1.9 202+1.2 119407 1754+ 1.0 1724+ 1.0
00Y,, 139407 11.8+0.7 1084+ 0.6 119+ 07 141408
gRaa %éé + }3 %?2 +0.9 126 +0.6 122+ 0.6 11.5+0.6
. 0X 4 841, J+12 155408 153409 1374038
thzg:tfﬁf;g::f:igg‘i g;fgg ]‘3’; Sayy 136107 (15107 106+ 0.6 116+ 07 1041 0.6
1000 0R,, 219412 148409 171409 104+ 0.6 11.1+06
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with increased k, the contribution of non-genetic com-
ponents to the variance of each of the traits, x and y, and
to covariance between them will decrease at a rate
dependent on the heritability coefficients h2 and k. Let
first k = 1. If r, and r, are the coeflicients of genetic and
non-genetic correlation, respectively, between x and y,
the same for both groups A4 and aa, then the within-
group phenotypic correlation, R, will be:

=r h.h +r,

xy g xy

(I—h3)(1—h).

Withk>1, R, =rhh, +7,

g "x"y

(1 ~h)(1—h),
where K2 = kh2/[(k — 1)h2+1], K2 = kh2/[(k— 1)h? +1].

The new values of the within-group variances can be
written as

o?x = a?x[h2 + (1 — h})/k;
aly=cy[h2 + (1 —hd)/k].

Some numerical examples of the effect of parameter
values on the efficiency of two-trait analysis are shown
in Table 4.

Several conclusions follow from the presented ma-
terial: (1) with increased family size (k), the estimates are
more accurate; (2) lower h?* for the within-group vari-
ances (6*AA and ¢*aa) caused by genes of other chro-
mosomes results in lower errors of the estimates. This
seemingly paradoxical result can easily be understood if
we recall that the reducing effect of increased family size
k on variation between families is higher when h? is
small; (3) for any combination of parameters, an increase
in R, leads to a higher resolution, and provided any
fixed h2 h; and R,,, the higher the r, the better is the
accuracy of estimation with increased k.

F, progeny

Two situations will be considered here, depending on
dominance relations in the QTL.

1. Full dominance at the QTL
=1 -1’fi(xy)

+[1=(1=r*1fa(x, ),

Smm(x= y) = Sl (X, y)

Table 4 The dependence of

mean absolute errors (9) of the
parameter estimates in two-trait 2ok
analysis on correlation (R) g

~

Variable parameter values used in simulations
R 0.0
0.0

0.0 0.3 0.6 0.6
0.6 0.6 0.6 09

between the traits in the case
of recombinant inbred lines.

Mean absolute errors of the parameter estimates

; . 5 73.4+4.7 734 +47 70.5 + 4.7 53.6+38 53.6+3.8
Simulated were 100 replicates, - T x x T
each with n = 200 lines and k . od, 348 + 18.1 348 4+ 18.1 340+ 19.3 287+ 19.9 287+ 199
individuals per line; distances
’ Sox 959+ 6.5 9594 6.5 95.8+ 6.3 798459 798 +59
between QTL groups were doy.e S74%59 574159  563+44  S30L49 530149
dy=Xx,,— %, =1 and 4
d = yAA yaa - O
eom Ll ate between 5 . 405+ 3.5 346432 280+ 2.7 20.6+ 1.7 135+ 1.1
the QTLIand marker Ay 221 20 ' 253425 166415  150+14 139+ 14 72405
Two levels of heritabilit
for the “within QTL.groyup 5 171+157 1504139  135+123  102+95 719+ 6.8
variation” were considered to 20 0d. 93 +10.9 616457  61.8+67 585465  245+21
be the same for botzh traits (x 0.5 -
Me 10] .
and y), with h? = h?€{0.25,0.5} 5 644449  S53+45 488440 381434  201+28
at k = 1; in this case the values Sox -
of other parameters were as 20 A4 418 +40 283423 282425 269425 128+1.1
follows: = =
A 5 ) 272426 247+22 248422 227420 172418
Re{0,0.3,0.6}, the genotypic GYan
correlation coefficient rgaa= 20 19.4 + 2.1 165+ 15 164+ 1.5 155+14 6.5+0.6
rg,.€ {0,0.6,0. 9} With k > 1
(.8 5 or 20) =r, hoh, + 5 5 554+4.0 50.0 + 3.9 46.7+3.7 425433 32,6+ 2.7
7o \/ (1= (1 - Where 20 r 522+39 38.8+39 36.3+3.0 34.6+29 131+ 1.1
= ki? /[(k - l)h -+ 1], and
3 ) 44164 183+ 15.4
néw valties of the within QTL 20 * 254168  194+159  182+155  176+150  794+75
groups pheznotyplc Varlances 0.5
will be 0" = o[, + 5 778450 722450 678451 639450 543147
2 ’
(12_ }zl")/ Kl anzd A 20 00X 44 742+ 49 59.6+4.9 56.3+48 542 + 4.6 28.9 4+ 3.0
o[k +(1—h2)/k]
5 381436 36.8 + 3.4 36.7+3.5 351 +3.0 31.5+27
20 00) a4 34.8+32 31.3+27 313+ 26 31.1+26 178420




Sam(X, y) = S5(x, y) =r(1 =) f,(x. )

+ [ =r(1=n)1fa(x, ),
Sarne (%, ¥) = S5(x, y) =12 (%, ) + (L =) 12 (%, ),
where f1(x, y) = fou(x, y) and f5(x, y) = f4(x, ).

2. General case: all three genotypes are different
at the QTL

Then:
Sum(X ¥) = 81(x, y) =1 =1)*f;(x, y)
+2a(nfa(x. y) + 12 f3(x, ),
Satm(%, ) = S5(x, y) = 2(r)f1(x, y)
+ L1 =2a()]f20x y) + 2l f3 0% 9),
Sy (X, ¥) = S3(x, y) =r*f1(x, ) + 20()f5(x, )

+(1=1?f3(x, ),

where a(r)=r(1 —r). The effect of correlation on the
efficiency of the estimation procedure in the above
situations was studied with the following parameter
values:r =0.1,d, =x,, —x,, = {land 2},d, =0, Orc=
O35x=03x 1 gy "'62 =0 y—1 Rlxy Rny 3xy
{0, 0.6 and 09} The data obtained are presented in
(Table 5). Note, that the data generated according to
dominance assumption f,,(x,y)=f,,(x,y) were ana-
lysed by the full dominance model (1) as well as by full
model (2).

Different comparisons could be done on this data set,
and for all of the parameters the main tendency within

Table 5 The dependence of mean absolute errors (8)* of the pa-
rameter estimates in the two-trait analysis on correlation (R) between
the traits in the case of F, progeny. Two hundred replicates, each of
size n = 1000, were simulated at recombination rate r = 0.1, distance
between QTL groups d, =x, , — x,e{1,2}, h,=x,,—x,,€{05,1},
dy= Yaa—YVaa = 0’ hy= Yaa— YVaa =O= OXgq = 0X 4y = 0Xpy = L 0Vas=
Y40 =0y, = 1. In the ML-functional all ¢’s were assumed to be
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cach of the models can readily be seen: an increase in
resolution of marker-QTL analysis resulting from the
measurements of an additional trait (y) correlated with
the main trait (x).

Noteworthy also are some other effects. Dominance
at the QTL (h, = 0) leads to much lower deviations of
the parameter estimates from their expectations [pro-
vided the assumption h, = 0 is taken into account, i.c.
model (1) is applied], with the size of the effect being
dependent ond /o, and R . The reason for this is clear.
When f,,(x, v) coincides with either f,,(x, y) or £, 4(x, y)
then the resolution is proportional to the distance be-
tween the densities f,,(x, y) and f, ,(x, ), all other things
being equal. When f,,(x,y) is intermediate between
foa (%, y) and £, ,(x, y) then it “dilutes” the initial differ-
ence [between f,,(x, y) and f,, ,(x, y)]. Thus, it can easily
be seen from Table 5 that in every case with QTL
dominance and d = x, , — x,, the precision of the par-
ameter estimates is approximately the same as in the
corresponding non-dominance case with only half of the
above difference d (compare the cases with d, =1 and
h, =0 and those with d, =2 and h, =0.5d_=1). Note
also a reduction in the precision if in the case of full
dominance (hx = 0) model (2) instead of (1) is used in the
analysis (which will try to make a resolution into three
components instead of two).

Discussion

It seems reasonable to execpt an increase in resolution of
the QTL-marker linkage estimation procedures with
increased discrepancy between the QTL groups.
Usually, the effect of the quantitative trait gene (s) on the
mean value of the traitin question is the target of such an
analysis. Therefore, difference measures like (x , , — x,,)/

different, as were R,,, R,, and R, The variant designation is as
following: F the condition h, = 0.5d, was used in data simulation (i.e.
additive action of 4/ais assumed) while in the ML-functional h_ was
independent on d,, O h, =0 in the data simulation, and in the ML-
functional h, was an mdependem parameter, Q, the same as Q but
with h, known

Variable parameter values used in simulations

R, =R, ,=R,=R 0 0.6 0.9
d, 1 2 1 2 1 2
Mean absolute errors of the parameter estimates
or 99.7+4.1 61.04+2.5 90.7+34 396+21 368-+23 82+0.5
F oh, 180+ 11.7 166 + 7.6 145+ 9.6 104 +53 61.6+3.6 445423
5d 319+ 186 295+ 124 256+ 14.1 1694 9.1 83.6+5.1 579+32
or 609 +238 154408 445+23 9.7+0S5 114+ 0.6 6.1+0.3
0 oh,, 9717+5.6 69.3+ 3.7 734+4.1 659433 60.5+3.2 56.1+3.0
od, 148 +6.7 790+ 4.1 108 +£5.1 64.1+33 526429 46.1 +28
0 or 499+ 25 13.8+0.7 3514+20 80+04 9.1+0.5 25402
4 od, 149+ 7.7 65.1+37 101 +4.9 389420 349+23 94405

* The mean absolute errors of the estimates are multiplied by 1000
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o, are of interest when the resolution power of tests for
QTL detecting and procedures of parameter estimation
are considered. We suggested earlier that a strong in-
crement in a discrepancy between QTL groups in seg-
regating populations could be achieved when employ-
ing joint distribution of a set of correlated QTs (Korol
etal. 1987, 1994). Consequently, a serious gain in per-
formance of QTL-marker analysis is expected on this
basis.

As we have seen above, with high correlations be-
tween quantitative traits, a good resolution is possible
even if the QTL groups (say, aa and Aa) are strongly
overlapping for their marginal distributions. The advan-
tage of the multi-trait analysis may be especially attract-
ive when the QT factor (locus) in question influences
several traits simultaneously. This corresponds to situ-
ations of pleiotropy. Another possible class of situations
where this analysis is relevant is close linkage between
different loci affecting related traits. It may be especially
important when a block of economically important
genes is going to be transferred from one species to
another and the recombination within the block become
suppressed (e.g. Rick 1972; Zhuchenko and Korol 1985;
Haley et al. 1993).

What are the reasons for the increased resolution
when correlation between the traits affected by the
target QTL is taken into account. They can easily be
understood from the following example of backcross
situations presented in Table 6. Here the locus A/a
affects both traits, x and y, with d, =d =d; in both
groups, Aa and aa, 6,=0,=0 and R, —R<O It is
clear that even in the case of zero correlation R, the
resolution will be better if the second trait is taken into
account (compare columns 1 and 2). The reason is the
increased distance between the group centres [e.g.

VB +di= \/Qd in the example presented in column 2].

Therefore, we can expect in this case that two-trait
analysis with zero correlation is equivalent to the signle-
trait situation with the distance between the group

means multiplied by \/i and the variances unchanged.
These assumptions were tested using simulated data.
The results shown in Table 6 confirm the expectations
{compare dr in columns 2 and 3). Let us discuss now the
effect of correlation between x and y. Geometrical con-
siderations allow us to assume that the resolution of our
backcross bivariate mixtures S, (x,y) and S,,.(x,)
into components f,,(x, y) and f,.(x, y) can be reduced to
a single-trait resolution problem, with a new trait, x’,
being the first main component of the system (x,y)
(provided that the respective ellipses in Aa and aa are
parellel). This formulation will be equivalent to the
initial one if we put d, = ./d? + d? = ./2d, and for both
groups, Aa and aa o, =0,/1 +R The closeness of
columns 4 and 5 in Table 6 with respect to Jr indicates
that this expectation holds as well.

A reduction of the within-group variance seems to be
the most important factor causing the increase in accu-
racy when correlated traits are involved in the analysis.
Neverthelesss, as was shown in Table 3, a decrease in
correlation between the traits in one of the groups, say
Aa, does not necessarily reduce the accuracy of the
parameter estimates. On the contrary, an increase in
variation within the Aa group manifested in an in-
creased norm of the covariance matrix |X,,| > |X,,| may
result in an increased precision, no matter what factor
caused the increase in [Z,,|: reduced correlation Rxy 4,
orincreased variances 6> x 4, 01 6>y 4,. Thus, it is reason-
able to assume, as we did in single-trait analysis (K orol
et al. 1994), that the resolution capacity of the marker
analysis in the case of two correlated quantitative traits
depends on the discrepancy between the bivariate dis-

tributions faa(xa y) and an(X, y)7 D(faa(xa y)s an(X, y)

Table 6 Demonstration of the
equivalence, with respect to

Variable parameter values used in simulations

the resolution power of the Req 0 0 0 —0.8 0 0.8
; : R 0 0 0 -038 0 0.8
marker-QTL linkage analysis, Aa /
: d 1 1 V2 1 V2 0
of the effect of correlation i 0 1 N { 3 0
between the traits within the v 1 i 1 1 \/0 5 1
QTL groups and the effect of 0% ga = OXa i . i . NI .
reduced within-group variance ~ %Y4a = %Va
(a backcross progeny case is d=V2
considered). Two hundred d=1 d=\2 Aa &
replicates, each of size n = 1000, Prgsen- *
were simulated at recombination  tation % a
rate r =0.1. According to the of the
explanation given in the text, case aa Aa aa Aa aa aa Aa
one will expect the same ér —
values for the pairs of columns: Mean absolute errors of the parameter estimates
2-3,and 4-5 or 62.0+2.3 33.0420 355418 48+03 52+03 9.7+0.5
| dd, 140+ 6.2 75.0+4.1 103 £ 5.0 201+ 1.0 7.6+ 04 1444107
ad, 367+ 19 748 +42 356+ 1.8 20.5+0.9 244+13 1434+0.8
80X 4, 360+ 19 21.3+1.2 36.5+1.9 6.8+04 7.6+ 04 50+03
66V, 13.94+0.7 209+1.2 120+ 0.5 73+04 78+04 46103
R, 224+ 1.3 357121 196+ 1.0 59+03 149 +08 7.0+ 0.4
O0GX 4, 388+ 19 199412 36.6+ 1.8 72+04 7.7+04 50+03
O0Y 4, 13.6 £ 0.7 225412 120+ 0.6 72404 79404 46+0.3
OR,, 219+1.2 384 +2.1 198+ 1.1 58403 156 + 0.8 6.7+04




While we did not calculate the effect of increased |Z,,]
on D(f,0f 42> this assumption seems to be a reasnable
explanation of the estimates presented in Table 3. This
means, that the analogy with the method of main com-
ponents is rather approximate here, which can easily be
demonstrated by the formal example shown in the last
column of Table 6. Here the mixtures S,,,(x,y) and
Sym(X, y) are resolved into the component densities f,,
and f,,, which differ from each other only due to dif-
ferences in Rxy.

The multi-trait approach could be no less important
in situations where the trait of interest (say x) is depend-
ent on the QTL in question (A4/a) and is strongly corre-
lated with another trait (y), the latter being independent
of A/a. As we could see, in this case too the additional
information provided by measurements of y increases
dramatically the mapping precision of the locus A/a, no
matter what type of mapping population was consider-
ed (backcross, F, etc).

Such correlations may be caused by the segregation
of other genes, environmental effects and physiological
limitations. As examples, trait pairs like “grain weight —
protein level” or “milk production - fat content” could
be mentioned. Due to the high cost of molecular marker
typing, many quantitative traits are usually measured
within one experiment, so that the needed structure of
data for the proposed QTL mapping approach is not an
exception.

Another application is studies of reaction norms of
the trait of interest to different environmental condi-
tions. The rationality of such an approach is due to the
well-known dependence of the gquantitative trait ex-
pression on environment. The estimates of QTL effects
are usually based on the identification of segregating
progeny under some ecological conditions and may be
entirely different from those obtained under other con-
ditions. The phenomenon of genotype-environment in-
teraction can be analysed based on marker approach.
The appropriate analysis may reveal QTL affecting: (1)
the ‘developmental potential’ of a trait under optimal
environmental conditions; (2) the stability of the trait in
the face of limiting conditions (with little or no effect
under optimum environment); (3) both the ‘developmen-
tal potential’ and stability simultaneously (Korol et al.,
1994). In addition to such a formulation, if a set of
genotypes (e.g., RILs or vegetative clones of an F,) could
be tested under different conditions, then the resulting
measurements of one trait in these conditions can be
considered as a multi-trait set (Falconer, 1981) and
treated by our procedures. This will result in a higher
efficiency of information extraction from the data than
the usual single-trait analysis can provide.

It is clear that the multi-trait approach of marker-
QTL linkage analysis could be also used within the
framework of interval mapping of QTL. Our results
(Korol et al., in preparation) show that this is indeed a
promising way to elevate the resolution power of the
interval procedures. It is worth mentioning that multi-
variate analysis has been successfully used to increase
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the precision of QTL mapping (e.g. Jansen and Stam
1994; Zeng 1994). However, our multi-trait approach
opens an additional and yet unexploited possibility for
further increase in resolution.
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